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A bs tract 

In contrast to the familiar group-theoretical investigations of the Kepler problem, 
providing rather different symmetry structures for different types of state, the question 
is posed whether the problem does not exhibit uniquely distinguished dynamic invariance 
symmetries, which may be considered characteristic for the Newtonian interaction, 
independent of the special type of orbit. Taking into account only one Laplace vector it 
is shown that one, and only one, such symmetry exists and that this is just that of the 
Lorentz group. One is led to consider a distinguished orthonormal dynamical frame of 
the system, providing an extension of the Lorentz invariance symmetry to that of the 
anti-de Sitter group. Finally, some remarks are made concerning the relativistic formula- 
tion and solution of the Kepler problem. 

1. Introduction 

During the last 15 years, much work has been done on the group-theoretical  
discussion of  the Kepler problem either classical or quantum theoretical.  [As 
representative for the state o f  affairs and for further references the two books 
o f  M. J. Englefield (1972) and o f  G. Wyboume (1974) may be cited.] This 
interest originates in the fact tha t4he  dynamical  symmetries of  the Kepler 
problem represent an ideal example for similar symmetries in more compli- 
cated and less understood physical systems, as might be seen, for instance, 
from A. O. Barut 's book  (1972) on dynamical  groups and generalized sym- 
metries with applications in atomic and particle physics. The intent ion o f  the 
present paper differs from this t radit ional  line. 

Since the contributions of  L. Hulth~n (1933), who realized an idea of  O. Klein, 
and of  V. Fock (1935) and V. Bargmann (1936) it is known that  the three- 
dimensional kinematical Lie algebra so(3) def'med b y  the Poisson brackets of  the  
angular momentum can be expanded to a six-dimensional dynamical  Lie algebra 

* In memory of Reinhard Johannes Stickforth. 
This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 
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SO(4), or e(3), or so(3, I )  by  adding the second integral vector of  Laplac@ 
according to whether the energy is negative, or zero, or positive, and with 
appropriate factors added to  the Laplace vector. From the usual more 
computational viewpoint this did not seem disturbing [cf., e.g., p. 37 of  
A. Decoster's thesis (1970) 2] . However, if  one takes notice of  the essential 
connection of Newton's potential with the existence of  the Laplace integral 
vector, the dynamical symmetry represented by this vector should be con- 
sidered characteristic of  the Newtonlan potential, so that it appears extremely 
dissatisfying that it is not  one distinguished "hidden" symmetry that mani- 
fests itself as a dynamical invariance group 3 of  the Kepler problem, independ- 
ent of  the state o f  the system, or with another word, adiabatically invariant, 
because every orbit might be transformed adiabatically into any other possible 
orbit. Thus, the object of  the present paper is to answer the following three 
questions: 

1. Does there exist an adiabatically invariant dynamical invariance symmetry 
induced by the angular momentum vector 1 and a Laplace vector, and if so, 
is there only one, and then, which one? 

2. In case (1) has a positive answer, does there exist a higher dynamical in- 
variance group of  which the former one is a subgroup? 

3. What may be the physical conclusions? 

These three questions define the subdivision of  the following investigation. 
The answers to question (1) and (2) are as follows: 

1. Question (1) amounts to a simple partial differential equation problem with 
one and only one solution, namely, a Laplace vector with modulus 
l := I 11. Either of  the two Laplace vectors may be taken, and furthermore, 
any linear combination of  the two vectors which has the modulus l, too. 
The Lie algebra thus obtained is the Lorentz algebra so(3, I)[ 

2. The fact that the two Laplace vectors (normed to modulus/)  and the 
angular momentum vector represent a group-theoretically distinguished 
orthonormal dynamical frame suggests considering the Poisson brackets of  
these two Laplace vectors as well. Then it is seen immediately that only l 
must be added as a tenth constant variable ~o provide a closed algebra of  
Poisson bracket relations. The invariance algebra thus obtained is the anti- 
de Sitter algebra so(3, 2). 

We shall confine the following discussion to the standpoint o f  classical 

1 This vector is also called the eccentricity vector or Runge-Lenz vector if the modulus 
is taken equal to the numerical eccentricity.-As to its intri~te history, attention 
should be drawn to a profound investigation of O. Volk (1976). 

2 This paper contains a very meritorious compilation of the earlier literature on the 
invariance groups of the hydrogen atom. 

3 As usual, "'invariance'" is meant with respect to the Hamiltonian, i.e., as constancy in 
time; "symmetry," on the other hand, is a neutral word, here, for either group or Lie 
algebra. 
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mechanics with Poisson brackets defined as 
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2. The Problem o f  the Laplace Vector's Constant Factor 

The five integrals of  the relative motion of the Kepler problem are the 
Hamittonian of the relative motion 

H := p21(2m) - a2tr  (2.1) 

the angular momentum of the relative motion 

1 := r x p ( 2 . 2 )  

and, for instance, the dimensionless second Laplace vector 

A . = -  p -  (2.3) 
m a  2 G 2  r 

This vector points to the aphelion and represents only one additional integral 
because of A • 1 = 0 and 

h z = e 2 := 1 + 2H12/(ma 4) (2.4) 

where e is the numerical eccentricity. W. Pauli (1926) derived the following 
Poisson bracket relations: 

Ill, 1]] : -e i /k l  k (2.5a) 

[Ai, l/] = --eiykA k (2.5b) 

2H 
[A i, Aj] = ma--- 4 eqklk (2.5c) 

where e#k means the three-dimensional permutation tensor and the summa- 
tion convention is used. For H =  0 this is a realization of the Lie algebra e(3). 
Because H commutes with 1 and A, it is quite obvious to define for H 4:0 two 
new vectors according to 

n + _ :=(ma4~ 1/2 
\ ~ ]  A for H ~ 0 (2.6) 

so that instead of (2.5a)-(2.5c) 

[li, l/] = --ei/kltc (2.7a) 

In i +-, lj] = --eijknk +- (2.7 b) 

[ni +-, nj +- ] = +eijklk f o r H <  > 0 (2.7c) 

thus rendering Lie algebras for H v~ 0, too, namely the algebra so(3, 1) if/-/-> 0 
(unbound states), and so(4)if  H < 0 (bound states), as stated already by 
L. Hulth~n (1933). 
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Instead of  n -+ we consider now the most general second Laplace vector 

k := f(H, 12)A (2.8) 

for this equation (2.7b) remains valid whereas equation (2.7c) must be replaced 
by 

[ki, k¢] = f2  2t/ eijklk + f a f ( H , l  2) 
" ma 4 3(12-------5--. 2eifl c [A 2lk - (1" A)Ak] 

= 3(12---- ) (e2f z) [H" eiyk lk (2.9) 

if equations (2.5b) and (2.5c), and A 2 = e 2 and I • A = 0 are taken into account. 
Therefore, the demand that the Poisson brackets of the li and ki form a Lie 
algebra amounts to 

e2f 2 = el 2 + g(H)  (2.10) 

where, without loss of generality, the structure constant e (which must be 
dimensionless for physical reasons) might be taken as 

e = -+1 (2.10a) 

Then, g(H) should have the dimension l 2, and therefore, because of dimensional 
reasons, 

g(H)  = 8" mot4/(2H) (2.10b) 

(6 :pure number). If H v~ 0, the usual vectors n +-, as defined by equation (2.6), 
are obtained with 

e = 8 = + 1  forH<> 0 (2.11) 

However, an adiabatically invariant real k is obtained i f  and only i f  

e = l ,  ~ = 0  
so that 

with 

[li, lj] = --ei /klk 

[ki, ljl = --ei/kkk 

[k i, kj] = eiyklk 

(2.12) 

(2.13a) 

(2.13b) 

(2.13c) 

k = k(2) := -IA/IA l (2.14) 

for instance. As mentioned above, equations (2.13a)-(2.13c) realize the 
Lorentz algebra so(3, 1). 

From thus it follows immediately that with a first Laplace vector 

k = k 0 )  := k(2 ) x 1/t = I x A/[AI (2.15) 

instead of the expression (2.14), equations (2.13a)-(2.13c) still remain valid; 
equation (2.13b) is easity proved, whilst the verification of equation (2.13c) 
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is a little cumbersome. Indeed, any constant vector k of the form 

k= cos ~kko) + sin $k(2 ) (2.16) 

(t~ : real number) satisfies equations (2.13b) and (2.13c), as is easily verified 
with equation (Z.13b) and equation (3.4) of the following section. 

More generally and independent of Newton's law of attraction, any, not  
necessarily constant, vector k orthogonal on 1, and with modulus l, satisfies 
equations (2 .13b)and (2.13c]. Indeed, any such vector might be written as 

k = f ( l , p~ , r , t ) r  - g(l, pr, r, t )p  (2.17) 

(where Pr is the radial momentum) wi th f  andg subjected to the condition 
k 2 = l 2 only. However, any vector of the type (2.17) satisfies equation (2.13b). 
Thus, forming [ki, k .  1] ~ 0, and considering equation (2.13b), one obtains 

[ki, k 1] l 1 = 0 (2.1 S) 

which amounts to 

so that 

[ki, k]] = F(l, pr, r, t) " eiiklk (2.19) 

I 0 13 --I  2 k l i  
--I 3 0 II k2 

(S~:x) := l 2 - I  1 0 k 3 

o -k l  -k2 -k3 

(2.22) 

[ki, k 2] = 2Feiikl~.t k (2.20) 

On the other hand, equation (2.13b) leads to 

[ki, l 2] = 2eijklqlk (2.21) 

So that F = 1 because of k 2 = l 2. QED. 
Thus, we have arrived at the surprising result that the symmetry of the 

Lorentz group is dynamically distinguished in more than one respect in the 
classical Kepler problem already. Especially, it is hidden in the Kepler problem 
as a uniquely distinguished dynamical invariance symmetry ! tn accordance 
with the current suggestive name "boost" for the generator of a pure Lorentz 
transformation, one might call the vectors k "'boost vectors" o f  the relative 
motion, in analogy with I being called the angular momentum of the relative 
motion. Remembering that particle systems in many respects behave like one 
single particle - e.g., gravitational n-body systems in a homogeneous gravita- 
tional field or H 2 molecules and He atoms in refraction experiments with 
molecular beams (Estermann and Stern, 1930) - we can look at a Kepler 
system as one single particle with constant spin S = 1, which generates an 
internal rotation group of this "particle." We have learned now that the con- 
stant spin S = I anda constant internal boost vector k must be considered as 
one constant unit, namely, a Minkowskian spin tensor S~x = -Sx~,  
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generating an internal Loren t z  group which originates from the Newtonian 
internal interaction o f  the "particle" called Kepler system. This internal realiza- 
tion o f  the Lorentz algebra has the remarkable property that both its Casimir 
operators vanish identically, 

C 1 := ~ S ~ S  u& = 12 - k 2 = 0 (2.23a) 

L . K h ~ e  c, - 1 C2 := a t  oKxouu - , -  k = 0 (2.23b) 

where e ~xuV is the four-dimensional permutation symbol, and summation runs 
from 1 to 4, and a diagonal metric (gKx) = (1, 1, 1, - 1 )  is assumed. 4 

3. Ex tens ion  o f  the  Dynamica l  Invariance S y m m e t r y  

Evidently, the two boost vectors k(1), k(2), and the angular momentum 1 
represent a distinguished orthonormal dynamical  frame.  Therefore, it is obvious 
to calculate also the Poisson brackets [ko)i, k(2)]]. 

Taking care of  

[ko) .  l] = -k(~)~ (3.1) 

[k(2)i, l] = k o )  i (3.2) 

one obtains 

~ 1 ) i ,  k(2)j] = --216ii + (k(1)ik(1)] + k(2)ik(2)] + li~)/l  (3.3) 

where the second term is equal to 

te  i • ej = t~ij  

(the e i are the Cartesian basis vectors) so that 

[ko)i, k(2)/] = -16 i/ (3.4) 

This suggests the introduction of  I as a tenth constant variable. Indeed, if we 
define the five-dimensional antimetric matrix 

--I 3 0 l t k(1)2 k(2)2 \ 

(sab) := 12 - l l  0 kO)3 (2) (3.5) 

-k(1)l -k(1)2 -k(l)3 0 

\ - k ( 2 ) l  -k(2)2 -k(2) 3 -1 0 / 

4 It should be noticed that C1 ~- 0 is not true with the usual vectors n ±. 



DISTINCTION OF LORENTZ AND ANTI-DE SITTER GROUP 

and the five-dimensional metric 

0 0 0 0) 
1 0 0 0 

(gab) := 0 1 0 0 

0 0 - I  0 

\ 0  0 0 0 -1  

we see that 
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(3.6) 

[Sab, Scd] = --LYacSbd -- gbdSac + gad She + gbcSad (3.7) 
According to a well-known formulas this means that the Poisson bracket 
relations of the Sab realize the anti-de Sitterian Lie algebra so(3, 2), thus 
establishing this symmetry as a still larger dynamical invariance symmetry. 
Thus, the Newtonian interaction even induces in a unique way the existence 
of a constant five-dimensional spin tensor Sab generating an internal anti-de 
Sitter group of the "particle" called Kepler system. This Sab realization of the 
so(3, 2) has the remarkable property, too, that both its Casimir operators 
vanish identically: 

because with 

C 1 : :  ½Sab Sab = 12 --  kffl ) - k~2 ) + l 2 -~= 0 ( 3 . 8 a )  

6"2 := l+'aW a =-0 (3.8b) 

(3.9) 1 ~abede¢, 
![4/a :=  ~ e : "  ObeOde 

(eabCae: five-dimensional permutation tensor) one has 

= W4 = 

1" k(1 ) / 

(3.10) 

4. P~vsical Conclusions 

The unique distinction of the fundamental Lorentz symmetry by the 
Newtonian interaction in the classical Kepler problem urges the conjecture 
that the opposite might be true, too, - namely, that a correct Lorentz 
covariant formulation o f  the classical problem o f  two bodies distinguishes the 
Newtonian interaction in a unique way. 

At first sight, this seems to be a rather irreal conclusion, because a lot of 
papers were occupied with relativistic particle dynamics since A. Sommerfeld's 
treatment of the relativistic Kepler problem, and never any hint of  such a dis- 

s Cf., e.g., p. 187 in the book of  R. Gilmore (1974). This formula was published for the 
first t ime by W. Pauli in his famous "Handbuch-Article" (1933), p. 180. 
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tinction was found. On the other hand, one should remember that relativistic 
particle dynamics never ceased to be a controversial field in classical physics 
- reaching up to so-called no-interaction theorems - as might be seen, for 
instance, from the preface o f E .  H. Kerner (1972) or from t_he book of  E. C. G. 
Sudarshan and N. Mukunda (3974). Indeed, opinions not only diverge as to 
whether the equations of  motions should be integrodifferential equations or 
Hamittonian differential equations, but  even the notion of  Lorentz covariance 
is differently used by different authors. Furthermore, most investigations are 
mathematically rather complicated, so that concrete problems are seldom 
solved, or if they are, as for instance with H. P. Kiinzte (1974), then it is only 
for special cases. At this state of  affairs the above-mentioned conjecture con- 
cerning the Newtonian potential might seem less irreal, and if there exist 
different possibilities for defining Lorentz covariance o f  particle dynamics, 
one might hope that a unique distinction of  Newton's interaction could serve 
as a distinguishing criterion. 

The Hamiltonian character o f  the investigation of  Section 2 suggests that a 
correctly formulated relativistic Kepler problem should have Hamiltonian and 
manifestly 6 Lorentz covariant character so that the kinematical integrals 

lij := x i p j  - x j p i ,  i, j = 1,2,  3 (4.1 a) 

must be supplemented by a further kinematical integral three-vector 

ti4 := x i p  4 - x4Pi ,  i = 1, 2, 3 (4.1b) 

which, because of  its orthogonality with the l i = ~ eijk l i k ,  represents only two 
new integrals, and which should become a Laplace vector in the nonrelativ- 
istic limit, thus revealing the true meaning of  this mysterious vector. There- 
fore, a connection between the additional internal canonical variables P4 and 
x4,  and the functions f(1), g o ) '  or f(2), g(2), defined by 

k(a)i = f(a)Xi - g(a)Pi, a = 1 ,2  (4.2) 

should be expected, which means that the eight variables x, x4, p, P4 of the 
relative motion must be subjected to two cbnstraints. In fact, as will be shown 
in a further paper, this program can be performed in a straightforward manner, 
because a suitably constructed covariant Itamiltonian formalism for two inter- 
acting p~ticles necessarily includes two nonholonomic constraints that 
restrict the possible interaction so severely that with certain simpficity 
assumptions the Newton interaction is the only possible one. Indeed, essential 
features of  this formalism are already contained in an interesting paper of  
P. M. Pearle's (1968)7; but the two constraints suggested by the Laplace vector 
and its intrinsic connection with the Lorentz group were not  at P. M. Pearle's 
disposal, so that he could not  treat bound states. 

6 "Manifestly" is meant here in a stronger sense than, for instance, in the book of 
E. C. G. Sudaishan and N. Mukunda (1974)! 

7 The author thanks Mr. G. Streicher for drawing his attention to this paper. 
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As to the result of  Section 3, comparable conclusions cannot be drawn, 
because the physical meaning of  the de Sitter group is understood much less. 
It should be noted,  however, that the anti-de Sitter space possesses several 
interesting properties,  as mentioned,  for instance, by S. W. Hawking and 
G. F. R. Ellis (1973). Furthermore,  it seems satisfying that  we have not 
obtained the de Sitter group S0(4 ,  1) instead of  S0(3 ,  2), because according 
to a remark of  T. Philips' (1962),  mentioned by  F. G/irsey (1964),  the group 
S0(4 ,  1) may raise questions regarding the positive definiteness of the energy. 
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